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Distorted gas bubbles at large Reynolds number 

By M. EL SAW1 
Department of Mathematics, Imperial College, London? 

(Received 4 December 1972 and in revised form 15 May 1973) 

The distortion of a gas bubble rising steadily in an inviscid incompressible 
liquid of infinite extent under the action of surface tension forces is investigated 
theoretically using an appropriate extension of the tensor virial theorem. A con- 
venient parameter for distinguishing the bubble shape is the Weber number W .  
The virial method leads to an expression relating W and the axis ratio x, of the 
transverse and longitudinal axes of the bubble. To first order in W ,  this relation 
agrees with the linear theory established by Moore (1959). Also, comparison of 
the results with his (1965) approximate theory reveals similar features and 
excellent agreement up to x = 2. In  particular, i t  confirms his prediction of the 
existence of a maximum Weber number. Although the present work does not 
consider the stability of these bubbles, it  is interesting to note that the maximum 
value of 3.271 attained by W differs only by about 2.8 % from the critical Weber 
number obtained by Hartunian & Sears (1957) for the onset of instability. 

An approximate method for the study of slightly distorted spheroidal gas 
bubbles is also formulated and the resulting boundary-value problem solved 
numerically. The theory is then extended to include gravity. The joint effect of 
surface tension as well as gravitational forces has not been included in earlier 
theories. The shapes of the bubbles are traced and compared with the unper- 
turbed spheroids. Comparisons for the velocity of bubble rise are made between 
the present predictions and some experimental results. In  particular the results 
are compared with recent experimental data for the motion of gas bubbles in 
liquid metals. 

1. Introduction 
The virial method has been extended to many different kinds of problem 

and is widely used in astrophysics. However, its usefulness in hydrodynamic 
problems has only recently been exploited. A general survey of some of its 
applications may be found in Chandrasekhar's (1969) book. A recent study of the 
equilibrium and stability of an incompressible dielectric fluid drop situated in 
a uniform electric field (Rosenkilde 1969) provides a nice illustration of the 
method. 

It is the purpose of this work to extend the tensor virial theorem of second 
order for a systematic investigation of the equilibrium of a gas bubble in uniform. 
translational motion with velocity U ,  through an inviscid incompressible liquid 
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of infinite extent, under the action of surfaoe tension. It is assumed that the 
liquid contains no surfactants, that thermally induced surface tension gradients 
are negligible (see Harper, Moore & Pearsori 1967), that the volume V ,  of the 
bubble is invariant and that the motion of the enclosed gas has a negligible effect 
on the flow. 

It is customary to use as a length scale the 'equivalent spherical radius' re, 
defined by 

The dimensionless parameters which are of direct dynamical significance are the 
Reynolds number R and the Weber number lV, defined by 

+7rr", = v,. (1.1) 

R = 2repU/,u, W = 2repU2/cr (1.21, (1.3) 

respectively. Here p is the density of the surrounding liquid, ,u its viscosity, and 
cr is the interfacial tension. R is taken large enough for boundary-layer ideas to 
be applicable. It is clear that the surface of l;he bubble must be stress free, so 
that the tangential viscous stress component must be continuous across it. As this 
condition is not satisfied by the ideal flow, a thin boundary layer forms a t  the 
bubble surface. Moore (1965) discussed the structure of the boundary layer on 
an ellipsoidal gas bubble. It was shown that viscous forces in the wake produced 
no significant modification to the velocity profile of the irrotational flow. 
Winnikow & Chao (1966) demonstrated the thinness of the wake in the case of 
droplet motion. In  the present work we shall assume that the boundary layer 
does not separate from the bubble surface, and thus use the irrotational flow 
field around an oblate spheroid of revolution. The virial analysis for an oblate 
spheroidal bubble leads to an approximate expression relating W and x. 

To examine larger distortions, we take as our starting point the oblate spheroid, 
because even for Weber numbers of order unity the bubble might be expected 
to resemble an oblate spheroid having the same axis ratio. The approximate 
theory leads to a differential equation for the shape which is then solved 
numerically. 

The method is then extended to examine the effect of gravity as well as surface 
tension on the shape of the bubble. The formulation of the problem is similar 
but the Froude number 4, defined by 

Fv = U2/2reg+, (1.4) 

where g* is the acceleration due to gravity, enters as a parameter. In  actual fact 
4 is an unknown parameter in the problem, but this difficulty is resolved by 
expressing Fr in terms of the drag on the sphei*oid, which is a known quantity. 
However this means that the viscosity of the h i d  is now a parameter and the 
equations are solved for different values of M ,  defined by 

M = ~ * , L L ~ / ~ c T ~ .  (1.5) 

The shapes of the bubbles are traced and compared with the unperturbed 
spheroids. They are found to be characterized by an indentation at the rear 
stagnation point. 
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Finally, the predicted velocity of rise of a gas bubble is tested with some 
experimental data. Three diverse cases are examined. The rise of air bubbles in 
water ( M  = 2.4 x 10-11) has often produced discrepancies in experimental re- 
sults. This is attributed to the fact that water, however pure, is known to con- 
tain a small quantity of an unknown surface-active contaminant. The present 
data are taken from the results of Haberman & Morton (1953). Other data 
taken from this paper relate to the rise of air bubbles in methyl alcohol 
( M  = 8.9 x 1O-l1). This provides a chance of comparing the present theory with 
Moore’s (1965) earlier theoretical predictions, as well as with known experiments. 
The theory is also compared with the experimental results for the rise of argon 
bubbles in mercury ( M  = 3-7 x Schwerdtfeger 1968). 

2. The appropriate form of the tensor virial theorem 
Let X be the surface of the bubble and 2 the surface of a fixed sphere with 

centre C and a large radius r.  Take n and N to be unit vectors normal to the 
surface elements 6S and SI: and both drawn in the outward directions relative 
to the closed surfaces S and X. The region enclosed between S and Xis of volume V 
and is wholly occupied by the liquid. It is convenient to employ a system of 
rectangular Cartesian co-ordinates O X , X 2 X ,  which is moving with the bubble. 
Its origint 0 coincides with the centre of the bubble and has velocity L$. Also 
the axis O X ,  is taken parallel to the velocity of the bubble, so that 

u, = u2 = 0, u, = u. (2.1) 

Let ui(xl, x2, x,, t )  be the liquid velocity relative to C. The combination of 
a moving frame OX,X,X,  and a velocity field ui relative to a fixed frame is 
slightly unusual, but has advantages for the present problem. One remarks that 
since C is a t  a large distance and since ui falls off rapidly with distance from the 
bubble, ui does not depend on t;  it would, of course, if 2 were a t  a finite distance. 
Thus we can obtain the momentum equation in the form 

= -- 
ax, ax,, 

where P is the pressure in the flow field. The advantage of this formulation is that 
certain integrals over X vanish on account of the smallness of ui. The equation of 
continuity is 

au,lax, = 0. (2.3) 
Unless otherwise stated, the summation convention applies to repeated indices 
in the above equations only. 

Now to obtain the second-order virial equation, we have simply to multiply 
(2.2) by xi and integrate over the entire volume V occupied by the liquid. Thus 
the first moment of the equation of motion is 

where d V = dxl dx2 dx3 

f At time t = 0, 0 and C are taken coincident. 
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is the volume element. Applying the divergence theorem to t.he right-hand side 
of (2.4) gives 

xj P diJ, + 2Rij + ITSij, 

where Sij is the Kronecker delta and 

dSi = ni dS, dZi = Ni d X ,  (2.7) 

where ni and Ni denote the components of n m d  N respectively. The tensor 

represents the effect of the disturbance on the pressure at the surface X and, in 
general, it  is non-zero even when X recedes to infinity. Finally, the scalar quantity 

n =I PdlV (2.9) 
V 

accounts for the microscopic motion of the liquid particles. 
Now the external pressure on S is given by Laplace's formula 

P,,-P, = - U V . n ,  (2.10) 

where P,, is the normal stress and is equal to the pressure P in the irrotational 
flow plus the viscous normal stress, which is smaller by a factor O(I2-l) and whose 
contribution is therefore neglected. Pg is the ,gas pressure inside the bubble and 
is an unknown constant. Thus (2.10) reduces to 

P-P 9 = -aG.n. (2.11) 

Using this boundary condition, the integral on the right-hand side of (2.6) may 
be rewritten in the form 

Is xi P dSi = - 2CCj + Kij, 

21s 

(2.12) 

(2.13) 
U c, = - xj v .11 asi where 

is the surface-energy tensor, see Rosenkilde (1967). The tensor 

(2.14) 

will be identified as the gas tensor. The next task is t o  transform the left-hand 
side of (2.4) into simpler integrals. After simple manipulations and application 
of the divergence theorem, the first integral gives 

(2.15) 

where 
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We can perform some further useful transformations once we have introduced 
the assumption of irrotational flow 

u, = a@,lax,, (2.18) 

where @ is the velocity potential. On substituting this value of u, in the integral 
on the right-hand side of (2.15) and applying the divergence theorem, we get 

where 

and 

(2.19) 

(2.22) 

Here is the kinetic-energy tensor and the contraction of it gives 

where T is the kinetic energy associated with the 
liquid. 

By similar calculations, the second integral on 
becomes 

(2.23) 

macroscopic motion of the 

the left-hand side of (2.4) 

Finally, on substituting from (2.6)-(2.28) into (2.4) one gets 

Lij + Lij = qj + Tlj  +A'& + Rij +Mi,+ M;j + Qij+ Q;j - Cij + $K,j + $ l T & i j ,  (2.29) 

which is the tensor virial equation of second order. It provides a set of nine 
moment equations since 

i , j  = {l, 2,3}. (2.30) 

3. The method of solution 
The application of the virial method requires the selection of a trial shape. 

Though the equations of equilibrium cannot be completely satisfied over the 
surface of an oblate spheroid in a uniform flow field unless the Weber number is 
small, to be consistent with experimental evidence and previous theoretical 
models (Siemes 1954; Saffman 1956; Hartunian & Sears 1957; Moore 1965) the 
bubble shape will be explicitly assumed to take the form 
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where a, > a,. This is an oblate spheroid whose axis of symmetry O X ,  is parallel 
to the velocity of the bubble. As a trial shape, i t  has the advantage that relatively 
simple expressions for the velocity field are available, e.g. in Lamb (1959). 

In order to evaluate the various tensorial quantities appearing in the virial 
equation, one requires the system of oblate spheroidal co-ordinates. This system 
is related to rectangular Cartesian co-ordinates by the equations 

x, = acosy,  x2 = wsiny, x, = z = kap, (3.2) 

(3.3) where 

The surfaces a = a, (=  constant) are oblate spheroids of revolution about O X ,  
and are given by (3,1), thus leading to the relations 

TiJ = k[( 1 + a2) (1 -- /32)]+. 

a, = k( 1 +a;)+, a, = ka,. (3.4) 

dS2 = hzda2+h;dp2+h;dy2 (3-5) 

h, = k(D/L)g, h, = k(D/E)&, hy = k(LE)&, (3.6) 

The line elements ha, h, and h,, defined by 

are given by 

where the notation 

(3.7) 1 D = a2+P2, L = l+a2, E = l -B2,  

Do = a8+P2, Lo = l+a; 
is now introduced. 

The motion due to an oblate spheroid a = a, relative to a fixed frame moving 
with velocity U parallel to its axis of revolution in an infinite mass of liquid, as 
given in Lamb (1959, p. 144), is 

where 

a) = c,p(acot-la- l),  

c, = k U / (  cot-, a, -- a,/L,). 

The velocity components along the Cartesian axes are found to be 

U, = c, /?x, /~~LD, u2 = coPx2/k2LD, U, = C,(Dcot-la)/kD. (3.10) 

The above relations are used to evaluate the different quantities in the tensor 
virial equation (2.29). Although the computations are straightforward, they are 
lengthy and tedious. The actual calculations and values of the tensors may be 
found in El Sawi (1970). In  particular, it is found that all the tensors are diagonal, 
and that L& and Tij are identically zero. Accordingly, (2.29) reduces to 

Lii = T,i + Nii + Rii +Mii + Mii + &fi: + &;i - Ci, + Q(P,V, + II). (3.11) 

This provides a set of three equations (i = 1,2 ,3) .  Two of these equations (i = 1,2) 
are identical because of symmetry about OX,. 

Now, upon eliminating the constant Pg&+ II from (3.11) and substituting for 
each element its value in terms of 2, one obtains 

where (3.13) 
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This expression for W constitutes the main result of this paper. Another useful 
result is the expression for the gas pressure P,, which may be obtained from the 
contracted form of the virial equation (3.11). The trace of this equation is 

L = T + N  + R + M + M' + Q + Q' - C + $(P,V, + TI), (3.14) 

where C is the surface energy. Equation (3.14) represents the scalar form of the 
virial theorem appropriate for a gaseous bubble rising in an infinite liquid. On 
substituting for the different quantities in this equation, one obtains the ex- 
pression 

for the dimensionless gas pressure Pg, 

4. Nearly spheroidal gas bubbles 
An approximate theory, based on the above virial result (3.12), is developed 

here for the study of nearly spheroidal bubbles. The same physical assumptions 
are made in the present case. The effect of surface tension on the deformation of 
spheroidal bubbles is considered first. Then the theory is extended to examine the 
joint effect of surface tension and gravitational forces. 

The problem is to determine a surface S on which the boundary condition (2.11) 
is satisfied. This condition may be written in the alternative form 

where 

P + CTJ = P,, 
J = l /Rl+ 1/R2 

is the first curvature of S ,  and R, and R, are the principal radii of curvature. The 
pressure P is determined from Bernoulli's equation 

P + *p(ui + u;) = p,, (4.3) 

where P, is the stagnation pressure and u, and ut are the normal and tangential 
components of the velocity, bearing in mind that u, vanishes on the bubble 
surface. The bubble shape S is represented in oblate spheroidal co-ordinates by 
the surface of revolution 

G = a-ao-g(P)  = 0, (4.4) 

where a = a. is the spheroid which has the same volume as the exact shape and 
is closest to it in some sense. We shall call this the basic spheroid. In  the sub- 
sequent approximate theory, a. is determined by the virial result (3.12). 

Thus we seek a gas pressure P,, a constant a. and a continuous function g(P) 
such that 

( 4 . 5 ~ )  P, - $ P U ~  + CTJ = P,, 
volume of G = V,, (4.5b) 

where in ( 4 . 5 ~ )  ut is the slip velocity and J is the first curvature for the surface 
(4.4). The derivation of J ,  in orthogonal curvilinear co-ordinates, is described in 
the appendix. By straightforward calculations and substitution into equation 
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(A 5 )  in the appendix, the expression for J corresponding to the surface (4.4) is 

J = kH/[D(L+Xg2)]8, ( 4 . 6 )  
found to be 

where 

H = L(2L - E )  a + L(2L- 3E) /3g - ELDg+ (3L - 2E) aEg2 + E(L - 2E)/3g3, 

(4.7) 

using the notation of (3.7). The size of the babble enters the above equations 
through k and it will be convenient to remove this dependence by introducing re. 
Since the basic spheroid is chosen to have the same volume as the true shape, on 
making use of (l . l) ,  one gets 

The above boundary condition ( 4 . 5 ~ )  may be written in the form 

re = k(a,L,)+. (4.8) 

where 

(4.9) 

(4.10) 

The expression (4.6) for the first curvature is now 

J = H/[D(L + E!i2)]#. (4.11) 

Consider now the surface (4.4), for small g, riuch that 

Substituting this in (4.11) leads to 

where 

J = J0+J+O(y2) ,  

J, = (ZL, - E) cc,/Li Di 

(4.13) 

(4.14) 

is the first curvature for the spheroid cco and 

J = L~~D~~[L,D0(2L0-3E)~g--L0D~E~ 
+( - 2 L ~ + 4 L ~ - L ~ E - 2 L O E + E 2 ) g ] + 0 ( g 2 ) .  (4.15) 

Similarly the slip velocity ut corresponding to the surface (4.12) may be written 

Ut = uy+uy+ ..., (4.16) in the form 

where up) is the slip velocity on the spheroidal surface a, and is readily calculated 

up) = UC, E+Lcl L-*, (4.17) in the form 

where c1 = l/(COt-~aO-ao/L,). (4.18) 

The second term uIp" represents the velocity perturbation. 
Upon substituting from (4.13) and (4.16) into the equilibrium condition (4.9) 

one finds that 
(a,L,)Q (J,+J) - gW(uF)2+ A )  == - +W6P+O(g2), (4.19) 

where h = up2 + 2up'up + . . . (4.20) 

is the velocity perturbation term. It is always possible to choose W small enough 

AW = O(g2) (4.21) so that the condition 
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may be satisfied. Moore (1959) has shown that the velocity corrections lag one 
step, in the perturbation scheme, behind the shape corrections. In  the present 
theory we shall assume that condition (4 .21)  is satisfied for all W ,  so that (4 .19)  
reduces to 

(ao LO)* (J, + 5) - 2 WUP)2 = - $ W6P + O(g2). (4 .22)  

This is the basis of the approximate method which we shall introduce in the 
next section. 

5. Linearized virial theory 
Having introduced the approximate method based on the hypothesis that the 

true shape of the bubble will differ little from the basic spheroid, we can use the 
flow field about this spheroid to determine the dynamic pressure on the surface 
of the true shape. Then the equilibrium condition (4 .22)  becomes a differential 
equation for g, and this is solved numerically. 

Upon substituting from (4 .15)  into (4 .22)  one gets 

A(/?, x) B + B(P, x) s + Q(P, x) 9 = F(/?3 x) + 4 x 1  + 0(g2), (5 .1)  

which is a linear second-order inhomogeneous differential equation in g. The 
function F(/?, x) is given by 

F(P,X) = *Wup)2-Jo(aoLo)Q, 

and a(x)  is a constant which varies with the axis ratio. The coefficients A ,  B 
and C in (5 .1)  are given by 

(5.3) 

A(/?, x) = - E(a,L,)+ (qlL,)-4, 
B(P,x) = P(2Lo- 3 E )  (aoL,)+D,-8L,-+, 
C(/?, X) = ( - 2Lg + 4L; - L; E - 2L0 E + E2)  (ao Lo)) DrQ Li8. 

In particular, 
A( 5 1, x) = B(0,X) = 0. (5.4) 

Thus for any given value x = xo, the functions A,  B, C and F in equation (5 .1 )  
are all known, and the corresponding value for W in (5 .2)  is obtained on sub- 
stituting for xo into (3 .12) .  However, the unknown constant a(X) has still to be 
determined. It is also clear from (5 .4 )  that (5 .1)  has a regular singularity a t  /? = 5 1. 

It is evident that (5.1) requires three conditions to determine the general 
solution. To accomplish this let us use the assumption that the bubble has fore- 
and-aft symmetry. This implies, using (3 .2 )  and (3 .3 ) ,  that the co-ordinate axes 
OZ and Ow, in a meridian section of the bubble, are normals to the trace of the 
bubble. In  other words, 

[dW/ildzl8=, = 0, [dz/aW],+, = 0. (5.51, (5 .6 )  

Performing the differentiation in (5 .5 ) ,  on the understanding that a > 0 far all /?, 
the condition is found to be equivalent to 

g(/?) = 0 a t  /?= 0. (5.7) 
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The latter condition (5.6), for the slope to be zero a t  the pole, is satisfied by any 
regular solution of the differential equation (5.1). Therefore we shall impose 
regularity of the solution a t  the pole. This lea,ds to, from (5.1), 

a 1 9  x)B(1) +C(L x) g(1) -F(L x) = 4X). (5.8) 

A third condition is necessary to determine the unknown constant U(X) in (5.1). 
Now as the volume of the bubble is to be prescribed, we normalize its value to 
t,hat of the spheroid ao. This is equivalent to f;he relation 

The conditions on (5.1) can now be summarized as follows: 

(5.9c) 

We now embark on solving the problem numerically using the method described 
by Pox (1957, chap. 8).  The basic process is to tgolve the boundary-value problem 
using an initial-value technique. One starts by solving the problem with some 
arbitrary initial conditions, combining the solutions to satisfy all the given 
boundary conditions. 

Consider now the inhomogeneous equation (5.1) together with the corre- 
sponding homogeneous equation 

4% x) s + B(P, x) g + Q(.& x) 9 = 0. (5.10) 

Equation (5.1) can now be integrated completely with the two-point boundary 
conditions ( 5 . 9 ~ )  and (5.9b). The numerical procedure is as follows. 

(i) Guess a value for a(x) .  
(ii) Define gI(P) to satisfy (5.1) and such that a t  ,L? = 1 

(5.11) 

(5.12) 

Clearly s(P) = SI(P) + W P )  (5.13) 

satisfies (5.1) and boundary condition (5.9b). Kow choose t such that y(p) satis- 
fies boundary condition (5.9 a).  This yields 

t = - -~1~0~ /B11~0~ .  (5.14) 

(iv) Choose U(X) such that ( 5 . 9 ~ )  is satisfied. This can be achieved using the 
following iterative procedure. 
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The integral in (5 .9~)  is denoted by y, where y is then a function of a(x) ,  and 
so one has to find a value for a such that y vanishes. Suppose that a+6a is the 
exact value for which y is zero. Then, using Taylor's theorem, one gets 

y(a + 6a) = y(a) + 6ady/da + . . . = 0. 

Therefore = - y ( a ) ~ ( ~ y / ~ ) .  (5.15) 

Now to calculate dy/da let the initial 6a be &a,. Then 

Hence by (5.15) one finds 

where &a, is the new value for 6a. Thus the general equation used to correct a is 

(5.16) 

where a,+, = an+6a, (5.17) 

and a, is the nth approximation to a. 

Runge-Kutta method with step width 
The numerical integration of (5.1) is carried out using the fourth-order 

sp = 0.002. (5.18) 

Upon reducing 6,8 to 0.0002, no significant change was detected in the results. 
It seems therefore that there is no appreciable build up of error resulting from 
reducing the step width to this value. 

The solution is started with a prescribed value x = xo, say. This fkes the values 
of a,and W .  Also the coefficients A,  B and C together with J, and $')are computed, 
a t  the specified number of points on the bubble surface, using this value of x. 

In  order to start the integration of (5.1), the value of a(x)  is required. However, 
this is not known in advance, in consequence it has to be determined by a trial- 
and-error solution. A value is guessed for it and the integration is then started 
from the pole and towards the equator (i.e. along the direction of the flow). 
In order to force the regularity of the solution at p = 1, the integration is started 
a few steps away from ,8 = 1, precisely at p = 0.996. This is accomplished by 
finding the series solution of (5.1) in the neighbourhood of /3 = 1 and selecting 
a few terms of the power series of the regular solution. This, however, has been 
found to have no advantages, in this problem, over the case when the integration 
is started exactly a t  ,!3 = 1. Both results are found to be identical, to the required 
degree of accuracy. This result is, otherwise, expected from the fact that the 
singularity in (5.1) a t  ,8 = 1 is regular. 

In  the iteration process it has been found that, to avoid running into a loop 
of oscillating convergence, it is necessary to add a fraction of 6a, at a time in- 
stead of the whole increment as in (5.17). The relation that has been employed 

an+, = a, +gsa,. (5.19) 
instead is 
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This has given rise to an average of about ten iterations necessary to obtain an 
accuracy of a(X) to three decimal places. 

The program required about 10min of computer time. It should be noted 
here that the iterative procedure was set t o  stabilize three decimal places. By 
reducing the tolerances in the iteration procew and reducing SP, greater accuracy 
could have been obtained but of course more machine time would have been 
involved. 

In  figure 1 a sequence of bubble shapes i,3 traced for different values of the 
Weber number. Thus, under the action of surface tension alone, the bubble 
seems to deform with increasing W from the spherical shape into a spheroidal one 
and then into a disk-shaped bubble and then probably into a toroidal shape. 
Whether all these shapes are stable remains to  be investigated. 

- 

1 -  

I I I 

FIGURE 1. Variation of the Weber number with the axis ratio for a family of symmetric 
bubbles obtained by linear perturbation of an oblate spheroid. The horizontal scale 
represents the same axis ratio for both diagrams. The relation between the Weber number 
and the axis ratio is that given by the ‘linearized virial theory’. 
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X 
2. Variation of the Weber number with the axis ratio. A ,  two-point theory; 

R ,  linearized two-point theory; C, virial theory; D, linearized virial theory. 

Moore (1965), using an approximate ' two-point theory ', obtained an expression 
relating the Weber number and the axis ratio. Using this relation instead of that 
of the virial theory and solving the differential equation (5.1) again, one obtains 
another relation for the variation of W with x. This we shall refer to as the 
'linearized two-point theory '. In  figure 2 comparisons are given for the variation 
of the Weber number with the axis ratio; the relations corresponding to the virial 
theory, the ' two-point theory' and the 'linearized two-point theory' are plotted. 
It is reassuring to note the tendency of the two linearized versions to converge 
towards each other. 

6. The effect of gravity 
Hitherto, our investigations have been confined to motions which take no 

account of gravity. This section is devoted to examining the effect of gravitationaI 
forces, in the presence of surface tension, on a rising bubble. 

Gravity forces become significant when the hydrostatic pressure is comparable 
with the hydrodynamic pressure, i.e. 

Now in the steady state, the drag force equals the buoyancy force, i.e. 

pg*re - pU2.  

&pu2nrecD = +m+?Pg*, 

or CD = 8g*re/3U2, (6.1) 
where C, is the drag coefficient. It is now apparent that gravity becomes im- 
portant when CD is O( I). 

Apart from minor modifications, the method is practically the same as that 
for surface tension alone. In  the present case Bernoulli's equation becomes 

P + &PU$')~ - pg*z = constant. (6.2) 
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Now taking the surface of the bubble to ,be as in (4.12) and assuming that i t  
has the same velocity field as that of the unperturbed spheroid ao, one gets in 
dimensionless form the equation 

A(P, X) g + B(P, x) g + c(P, x) g = F(P, x) - Wx(reF,)-l + constant. (6.3) 

This equation is similar to (5.1)) the terms having the same meaning. Now for 
a point on the surface of the bubble 

= aB = ~oP+Pg(.B)+0(g2) ,  (6.4) 

in dimensionless form. Combining (6.3) and (6.4) one gets on the surface of the 
bubble 

A(P, x) g + B(P, x) 4 + w, x) g = nP7 x) + Z(x), 
where = C(P, x) +PWPPe,  W,  x) = ~ ( p ,  x) - aopW/lCre, (6.6) 

(6.5) 

with Z(X) playing the same role as a(X) in (5.l). It now remains to determine the 
Froude number. From (1.4) and (6.1) one obtains the relation 

Fr = 4/3C,, (6.7) 

so that one may also assert that, for -F, = O( I), gravity forces come into play. 

matter to show that 
From the expressions defining the parameters M ,  R, W and C,, it is a simple 

CD = $MR4U.'-3. (6.8) 

(6.9) 

Now availing ourselves of the expression for C,, obtained by Moore (1965), 

C, = (4813) G(x)  +,O(R-P), 

where (6.10) 

it will be possible to find F, and R for any spheroid whose axis ratio is known. 
This is accomplished by prescribing values $or M and x. It is then possible to 
determine W and G ( x ) .  Combining (6.8) and (6.9) one finds 

R = (36W3G(x)/M)*, (6.11) 

which determines the value of the Reynolds number. It is then a simple matter 
to determine C, and q. 

Having found the necessary parameters, we now proceed to solve (6.5) 
numerically. The technique used resembles that adopted for the solution of (5.1). 
One starts with a given spheroid a0 whose axis ratio is xo, and a prescribed value 
for M .  Knowing xo and M, one determines re, W ,  G(x) ,  R, CD, Fp and U .  It is 
important to notice that, in this procedure, the Weber number is the key para- 
meter and once it is specified, the remaining parameters including the bubble 
shape are determined. Apart from the fact that the numerical integration now 
runs from the forward stagnation point to the rear stagnation point the other 
steps and assumptions are all applied as for the symmetric case. 

It is a simple matter to calculate the values of W, R, C, and E j ,  corresponding 
to xo, using the relevant expressions. The results indicate a minimum of C, 
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FIGURE 3. The theoretical drag coefficient as a function of the Reynolds number. -, 
two-point theory ; - - - - , virial theory. The right-hand end of the curves corresponds to an 
axis ratio x = 6. 

a t  W = 1.91, corresponding to x,, = 1-44. Moore (1965), including the effect of 
the boundary layer in computing C,, found that the minimum of C, occurs a t  
W = 1.8. Other features predicted by his theory are also observed in the present 
one. It seems to  support his speculation that “the drag coefficient is not very 
sensitive to the shape of the bubble once the axis ratio is fixed”. The present 
theory predicts the rise of C, with R (figure 3) after reaching its minimum value 
but not so sharply as in Moore’s theory. This is probably because boundary- 
layer effects have not been included in the present work. 

7. Comparison with experiment 
The most extensive experimental results with which we can compare the 

theoretical predictions are those of Haberman & Morton (1953). Comparisons 
are also made with recent experimental results of Jones (1965) and Schwerdtfeger 
(1968). The theory is tested by comparing its predictions of the velocity of rise 
as a function of re. An attempt is also made to compare the shapes of the bubbles. 
In  figures 4 and 5, the shapes predicted by the present theory are traced using 

12 P L M  
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i . f! (d 
FIGURE 4. Shapes predicted by the virial theory for air bubbles in distilled water 

( M  = 2.4 x 10-11). - - -, basic spheroid; --, theoretical bubble shape. 

continuous lines, while those of the spheroids a, are shown as broken lines. 
Plots of U as a function of re for air bubbles in methyl alcohol and in water, and 
for argon bubbles in mercury are shown in figures 6 and 7. Comparison of the 
theory with experiment for water shows a slightly higher value for U than the 
corresponding experimental values of Haberman & Morton. Also the maximum 
value of U occurs at a larger re than that given by experiment. Moore (1965) 
noticed such a discrepancy in comparing his theory for methyl alcohol with 
Haberman & Morton’s experimental curve:. The present theory for methyl 
alcohol reveals similar features. In particular, it is also observed that for x > 2 
reasonable agreement between theory and experiment still exists. 

It is interesting to note that the virial i,heory gives, for all three liquids, 
a maximum value of U a t  an axis ratio x, = 1.9 with a corresponding value of 
W = 2-70. Similar calculations using the ‘two-point theory’ give x, = 1.9 with 
a corresponding value of W = 2.73. It seems therefore that, for low N liquids, 
the axis ratio is a crucial parameter in the sense that, once it is fixed, it is possible 
to determine the drag coefficient and the velocity of rise irrespective of the bubble 
shape. It is necessary to make further investigations on this point owing to the 
fact that the present theory does not account for the presence of a boundary 
layer on the surface of the bubble. 
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(A  (k )  
FIUURE 5. Shapes predicted by the virial theory for argon bubbles in mercury 

( M  = 3.7 x 10-14). - - -, basic spheroid. -, theoretical bubble shape. 
12-2 



180 M .  El Xawi 
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Equivalent radius (cm) 

FIGURE 6. Comparison of theory and experiment for air bubbles ( a )  in methyl alcohol 
and ( b )  in distilled (or filtered) water. - - - -, virial theory; -, smoothed experimental 
curve (Haberman & Morton). 
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FIGURE 7. Comparison of theory and experiment, - - - -, virial theory; 
0,  experimental work (Schwerdtfeger). 

Comparison of the theory with the experilmental results of Schwerdtfeger, 
for argon bubbles rising in mercury, shows fair agreement. It is disappointing 
that no results for smaller re are available for mercury because the present theory 
decreases in accuracy as re increases. 

The size of bubbles dealt with in this work is of the order of a few millimetres. 
It is therefore not surprising that experimenters find it rather difficult to obtain 
clearer photographs for such bubbles. Haberman & Morton give photographs of 
air bubbles in water. More recently, Jones (1965) carried out similar experiments, 
but his photographs are clearer and relatively 1 arger than those of Haberman & 
Morton. The present theoretical shapes, figure 4, are several hundred times larger 
than the experimental shapes, which do not exceed the size of a dot in some cases. 

It seems desirable, therefore, that more experiments should be done, with a 
view to obtaining enlarged and clearer photographs. Figure 5 shows the shapes 
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of argon bubbles in mercury but, to my knowledge, no such experimental results 
are yet available. 

The bubble shapes in figures 4 and 5 are characterized by an indentation a t  the 
rear stagnation point. The size of the indentation increases with an increase in 
the Weber number. This effect is noted to be more pronounced in water than in 
mercury. In  other words the rate of indentation growth, as the Weber number 
increases, is faster in high M liquids than in those with low M values. 

8. Discussion 
One of the objectives of this paper is to illustrate the potentialities of the virial 

method, in hydrodynamics, by applying it to the motion of gas bubbles. To some 
extent the method is a formal one since it presupposes a knowledge of the bubble 
shape, a thing which is usually lacking. However, it  offers an efficient systematic 
way for the solution of certain problems where known methods may fail to do 
so. Earlier workers have demonstrated that the virial method, in some cases, 
leads to concrete results. Ledoux & Pekeris (1941)’ in their study of gaseous 
stars, using the virial method, obtained results which agree exactly with what 
follows from a strict variational treatment based on the same trial function. 
Chandrasekhar & Lebovitz (1963a, b)  found that the linearized form of the virial 
equations permits exact and explicit solutions of problems associated with 
homogeneous masses. 

In  the present work, on expanding the expression (3.12) as x -+ 1 (i.e. neg- 
lecting W2) ,  one finds 

x =  l + & W ,  (8.1) 

which agrees with Moore’s (1959) linear theory. Thus the virial method gives the 
exact solution, of an oblate spheroid, if W 2  is negligible. 

Let us now compare the virial result with that of Moore’s (1965) approximate 
‘ two-point theory ’. First of all, the leading term in both results is identical with 
that in (8.1). Consider now figure 2 ,  in which the ‘two-point theory’, the virial 
theory and their linearized versions are represented in terms of W versus x. One 
finds that, for x = 2, the difference between these theories (curves A and C) 
is 1.4 yo; for x = 3,6*2 %; and for x = 4, 11.6 yo. One may be tempted to say that 
the difference between them is an indication of the error involved in the spheroidal 
approximation. This may not be the case in view of the simplifying assumptions 
made in both theories. However, Moore (1965) has shown that his ‘two-point 
theory’ is reliable up to x = 2. This, a t  least, ensures that neither of these theories 
is far from the exact one, up to x = 2. 

Further examination of figure 2 shows that there is a maximum Weber 
number of 3.271 a t  x = 3.72 in the virial theory, as compared with 3-745 a t  
x = 6 in the ‘two-point theory’. Although the latter result is well outside the 
range of validity of the ‘two-point theory’ approximation, it is striking that the 
virial theory exhibits the same sort of behaviour, though a t  a smaller axis 
ratio of 3.72. This seems to support Moore’s conjecture that “there is a maxi- 
mum Weber number. . . above which the symmetric shape is impossible”. It is 
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interesting to note that the maximum value attained by Win the virial theory 
differs only by about 2.8 %from the critical VlJeber number obtained by Hartunian 
& Sears (1957) for the onset of instability. 

A remarkable feature of figure 2 is the way in which curves B and D, the 
curves that represent the linearized versions of the above theories, tend to 
converge towards each other. Although it is premature to conclude from this 
that the curve corresponding to the exact theory should lie in the intermediate 
region between these curves, it may be regarded as an indication that the exact 
curve is not far from this region. 

I am grateful to Dr D. W. Moore of the Department of Mathematics, Imperial 
College, London, for much helpful discussion and criticism, and to the Sudan 
Government for a postgraduate scholarship. 

Appendix 
Here we give a special case of the method described by Weatherburn (1930, 

pp. 86-57) for the derivation of the first curvature of a surface. In  order to 
avoid any ambiguities in the sign of the normal, we shall define n to be the unit 
normal to the surface directed away from the centre of curvature. Thus for an 
ellipsoidal surface, n denotes the unit outw;trd normal. The first curvature J of 
the surface is then given by 

J = V.n. (A 1) 

(A 2) 

Consider now a family of surfaces 

G(x,  y, x )  = constant, 

where (x, y, z )  are taken to be orthogonal curvilinear co-ordinates. This is a special 
case of the more general one, for the oblique co-ordinates, treated by Weather- 
burn. The unit normal n a t  any point on the surface G may then be expressed by 

where 

n = FVG!, 

H = 1 / p q  

Substituting from (A 3) into (A l) ,  the expression for the first curvature of the 
surface (A 2) becomes 

J = PV2G + V.F. VG, (A 5) 

or J = FV2G+n.VlogG. (A 6 )  

For our purpose, we shall take G to be a surface of revolution of the form 

G = x - k - l g ( / )  = 0, (A 7) 

where k and 1 are constants and g is a single-valued continuous function of y. 
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